MINRES Seed Projection Methods for Solving Symmetric Linear Systems with Multiple Right-Hand Sides
نویسندگان
چکیده
منابع مشابه
Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides
We analyze a class of Krylov projection methods but mainly concentrate on a specific conjugate gradient (CG) implementation by Smith, Peterson, and Mittra [IEEE Transactions on Antennas and Propogation, 37 (1989), pp. 1490–1493] to solve the linear system AX = B, where A is symmetric positive definite and B is a multiple of right-hand sides. This method generates a Krylov subspace from a set of...
متن کاملA new seed projection method for solving shifted systems with multiple right-hand sides
In this paper, we propose a new seed projection method for solving shifted systems with multiple right-hand sides. This seed projection method uses a seed selection strategy. Numerical experiments are presented to show the efficiency of the newly method. Keywords—shifted systems, multiple right-hand sides, seed projection.
متن کاملImproved seed methods for symmetric positive definite linear equations with multiple right-hand sides
We consider symmetric positive definite systems of linear equations with multiple right-hand sides. The seed conjugate gradient method solves one right-hand side with the conjugate gradient method and simultaneously projects over the Krylov subspace thus developed for the other right-hand sides. Then the next system is solved and used to seed the remaining ones. Rounding error in the conjugate ...
متن کاملthe block lsmr method: a novel efficient algorithm for solving non-symmetric linear systems with multiple right-hand sides
it is well known that if the coefficient matrix in a linear system is large and sparse or sometimes not readily available, then iterative solvers may become the only choice. the block solvers are an attractive class of iterative solvers for solving linear systems with multiple right-hand sides. in general, the block solvers are more suitable for dense systems with preconditioner. in this paper,...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2014
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2014/357874